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STEADY-STATE AND STABILITY ANALYSIS OF EXTERNALLY PRESSURIZED
GAS-LUBRICATED JOURNAL BEARINGS WITH HERRINGBONE GROOVES
by David P. Fleming

Lewis Research Center

SUMMARY

A small eccentricity analysis was performed to predict the load capacity and stabil-
ity of an externally pressurized bearing with herringbone grooves. Numerical results
were obtained for a range of feeding parameters, pressure ratios, groove lengths, and
orifice recess volumes for compressibility numbers from 0 to 50. These results were
obtained from the digital computer program which is presented in an appendix. Results
showed that the addition of herringbone grooving to an externally pressurized bearing in-
creases stability, but reduces load capacity at low compressibility numbers., A fully
grooved bearing is more stable than a partially grooved bearing. Load capacity and
stability decrease near the speed wheref’%he pressure due to the herringbone groove pump-
ing equals the external supply pressure. Orifice recesses decrease stability, particular-
ly at high compressibility numbers.

INTRODUCTION

Gas-lubricated bearings may be divided into two broad classifications: self-acting
and externally pressurized. In a self-acting bearing, the film pressure which supports
the load is developed by the relative motion of the bearing parts and is proportional to the
fluid viscosity. When there is no motion, the load capacity is zero. In contrast, in an
externally pressurized bearing, lubricant gas under pressure is supplied from an exter-
nal source. Thus, this type of bearing can have a substantial load capacity even when it
is stationary. \

Because of the low viscosity of gases, self-acting gas-lubricated bearings will carry
a much smaller load than oil-lubricated bearings. {For the same reason, they are much
more susceptible to self-excited instability, commonly known as fractional frequency
whirl. A major part of the research in gas-lubricated bearings has been directed toward



development of bearing configurations that will operate stably. Some of these designs,
for example, tilting pad bearings, achieve stability at the expense of steady-state load
capacity. One type of self-acting bearing that has good stability and can also carry a
higher load than a plain bearing is the herringbone grooved bearing (refs. 1 to 3).
Externally pressurized bearings also have a higher load capacity than plain self-acting
bearings and also are fairly stable (ref. 4).

The principal disadvantage of the externally pressurized bearing is the need for a
continuous supply of pressurized gas. The herringbone bearing, on the other hand, needs
no external supply, but has no load capacity at Zero speed. The two bearing types could
be combined; for example, a herringbone grooved rotor could be installed in an external-
ly pressurized bearing. External pressurization could be used for a startup; upon
reaching operating speed the external supply could be shut off, and the unit operated as
a self-acting herringbone bearing. Alternatively, the external supply could be main-
tained; the inward pumping of the herringbone grooves would reduce the amount of gas
needed from the external supply.

Previous analyses have evaluated the load capacity and stability of herringbone
grooved bearings (refs. 1and 2) and of externally pressurized bearings (refs. 4 to 6).
Vohr and Chow determined the load capacity of herringbone grooved bearings in ref-
erence 1; their analysis was used to evaluate stability in reference 2. Experimental
stability data for herringbone bearings were obtained in reference 3. The data showed
that the analysis predicts the onset of instability consistently; however, actual insta-
bility occurred at somewhat lower speeds than predicted.

The load capacity of externally pressurizéd bearings was determined by Lund in
reference 5. In a later report (ref. 6), Lund calculated the stability of externally pres-
surized bearings operating at finite eccentricities. Here he included the effect of orifice
recess volume and attempted to account for there being a finite number of orifices,
rather than the line source usually assumed. Reference 4 evaluated the stability of an
unloaded externally pressurized bearing and included the effect of orifice recess volume
as in reference 6.

All of these analyses are similar in that they use a small eccentricity perturbation
and solve for the perturbed pressure using a separation of variables scheme. Thus it is
easy, in principle, to combine the solutions to find the load capacity and stability of a
herringbone bearing with external pressurization.

The objectives of this investigation are to determine analytically the steady-state
and stability characteristics of externally pressurized herringbone grooved bearings.
Various combinations of supply pressure, feeding parameter, orifice recess volume,
and groove length will be explored.



ANALYSIS

The bearing configuration to be analyzed is shown in figure 1. It consists of a double
row externally pressurized bearing with herringbone grooves. The grooves are shown
on the rotor, but the analysis is unchanged if they are on the bearing. The herringbone
grooves may be partial, as shown, or they may extend the full length of the bearing. For
simplicity of presentation, it will be assumed that the rows of orifices are closer to the
midplane of the bearing than are the herringbone grooves. This includes the limiting
case of the orifice rows coinciding with the ends of the grooves. Extension to other cases
is straightforward. It will be further assumed that the bearing is symmetric about the
midplane. With this assumption, only half the bearing need be analyzed. Other assump-
tions are that the number of herringbone grooves is large (ref. 1) and that there are
enough orifices so that each row may be approximated by a line source.
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Figure L - Externally pressurized herringbone bearing.

The analysis of reference 1 applies, with the exception that the axial mass flow is no
longer zero as it was in the herringbone bearing without orifices. Thus, the differen-
tial equations and boundary conditions must be modified to account for axial mass flow in
the bearing and flow through the orifice,

To conveniently obtain solutions for steady whirling, which are needed for the sta-
bility analysis, a rotating coordinate system is introduced by
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where wp is the frequency of steady circular whirling. Symbols are defined in appen-
dix A. The differential equation to be solved (from ref. 1), is

1 2 . . 0 .
E -55;[./191_ sin B + (,jlzg —./Zr) a cos B - prhr sin B] +-é-z- [a.lzg +(1 - a).lzr sin 8

Hw-w) _5:? [parhy - p(1 - ah |smp =0 (2

This and subsequent expressions were derived for the herringbone grooved section of the
bearing, but may also be used for the smooth section by setting h_ = hr’ The expres-
sions for the mass flows .,/ler, M zg’ and ""zr are in appendix B. The procedure now
is to approximate the film pressure according to

P(6%,2) ~ pyf2) + €p (6%, 2) (3)

Equation (3) and the expressions for the mass flows from appendix B are substituted into
equation (2). The resulting expression is considered an identity in the eccentricity ratio
€, and a separate equation written for each power of € which appears. Powers of ¢
higher than 1 are neglected; thus, two equations result. The zero-order equation can be
written

Lo
4 [a./z g0+ (- a)/zro} =0 (4)

This may be integrated once immediately to yield

0y + (1 - @)y = A,

20 = Constant (5)

zg0

In terms of the dimensionless pressure PO = po/pa and dimensionless coordinate
¢ = z/L, equation (5) for an isothermal bearing becomes

dp 12uRT 4 AR
P.le. - 0l - 20 Constant (6)
0[®°p ac
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The first-order equation is

®p, [ ap, oP, 0%p i 0P a%p,
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+ ? - 0 __0 . ..l-_ = 0 (7)
P oag|at p,

where the €'s are constants given in appendix B. They differ from the constants given
in reference 1 because dPO/ d{ is not constant in a bearing with orifices. The constant
A is the standard gas bearing compressibility number, and o is a dimensionless
representation of the whirl frequency.

Boundary conditions. ~ At the ends of the bearing

and
At the bearing midplane, by symmetry,
dp oP
_0__1_ (9)
d¢ a¢

Pressures P and P, are continuous throughout the bearing film, but there will
be discontinuities in the derivatives dPO/dC and oP 1/ 9. These are caused at ¢ = ¢ g’
by the end of the herringbone groove pattern, andat { = ¢ £ by the gas flow through the
orifices.

Since, in differential equation (6) for PO s dPO/ d¢ is the highest order derivative,
the discontinuity in dP 0/ df at £=¢ g need not be found explicitly. The discontinuity
in oP 1/Z)C at ¢ = Cg may be determined by noting that 4, = a“lzgl +(1- oz).lzrl is
continuous at this point. The perturbed mass flows .,llz 1 and "lzr 1 may be found by

differentiating the expressions for ‘/{zg and ”lz r (appendix B) with respect to € and



then setting € = 0, for example, “lzgl = a/zg/ae[ ¢=0+ The result for oP,/a¢ is

opP P ap
——1 =4 M%’ cos 0% 4+ ¢ E‘e cos6*+l? ___1.+___1. (10)
¢ et P .Cp2 R 2 726 3¢ |ee-

g 0~ Pa g

in which ¢ * denotes a value of ¢ infinitesimally greater than ¢ g The expression for
%’m, as we%l as for the other ¥'s, is in appendix B.

At the orifices, conditions are similar to those in an ungrooved externally pressur-
ized bearing, analyzed in reference 5. One important difference is that, in an externally
pressurized herringbone bearing, the gas flow through the orifices can be in either direc-
tion, depending on the supply pressure and the pumping in the herringbone grooves.
Boundary conditions on pressure are found by balancing the gas flow through the orifices
with that through the bearing film. The results are

DPOC dp

mg = - _0 (11)
TN T
and
» | F1 Py — ma L/ Fle  om
S v - S B ) iy
8=% 8=L | 0°s 4(_c
’ P
5/le=0
2 P oP
-3+ 20 o5 p% - _1C +2Pg 0¥ L l*c (12)
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The dimensionless mass flow m is given by the usual orifice flow equations, with in-
herent compensation effects accounted for as in reference 6.

2
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The flow when the bearing is concentric, mg; is obtained by using the concentric values
P.=Pgy, and h = C in equations (13) and (14). The feeding parameter Ay
(eas. (11) and (12)) is defined by

6uN2 VAT

- Ay = B (15)
t 3 2

paC 1+86°

and ¥, (in eq. (12)) by

_NV |, L _ VL
TDLC Py D Py.D

¥y (16)

Solution of differential equations. - The constant in equation (6) is determined by the
gas flow through the orifices. From equation (13), with € =0,

2
My = Nyp,mg
V4
AR VAT Y1 +062

Combination of equations (15) and (17) with equation (6) gives

(17)




—_— - = (18)

This differential equation contains two unknowns: the pressure P, and the mass flow
m. The procedure for determining Py and m is (1) assume a value for mq, (2) in-
tegrate equation (18) from {=0to ¢ = Cf, using a forward integration scheme such as
Runge-Kutta (for ¢ > $» My =0 and Py = Poc), (3) calculate a new value of m, from
the value of P, = Po(ﬁf) just found, and (4) compare with the previous m; if different,
repeat steps 2 to 4 until convergence is obtained.

Differential equation (7) for P, may be solved (as in ref. 2) by assuming that Py
is represented by

P, = Rela(t)e®"] (19)

When this is substituted into equation (7) there results

2 ap dp
4G, 2L-¢) 9 iep I 1le, —Qsg,(n-0) +9,16- ¢pc
a2 dc P ac d¢ de

- |e i{‘lwf (A-0) +€,.|iP, +€ iri‘lar..l_ < L\ P _ (20)

Boundary conditions for P; in equations (8), (9), (10), and (12) transform into the fol-
lowing boundary conditions for G

G=0 at ¢=0 (21)
4G at §=-1- (22)
i 14 2
m, L%
4G = AL ¥m felé €n +-1-‘6’31G + 96 (23)
df |eet  2PgR R 2 ¢=t, at |-
g g
Yy mpA 2 m,A
92 =-d_G_ —EGC —2+ 0 t+io_‘P1 +1¢5 +6 0 t (24)
AWlegr Cleey B T\Ps 2p2 1+52 Pock




The perturbed pressure P, may now be determined by solving differential equation (20)
numerically by the method detailed in reference 4.

Determination of load and stability. - The radial and tangential components of the
bearing load are found by integrating the film pressure over the bearing area.

Fr L 2m -cos 0*
= paP R do* dz

Substitution of equations (3) and (19) for P and performance of the 6* integration yields,

in dimensionless variables,
f 1/2
rl_ ol Re f G dt (25)
f, 2 ARY

The dimensionless forces in equation (25) are defined by

F ™~
f.= r
epaLD
’ (26)
F
epaLD )

The resultant bearing load W and attitude angle ¢ may now be calculated.

— 1/2
W= _ - (2 417) @)
epaLD
f
Q= 1:a.n'1 (—-t-> (28)
L

Figure 2 illustrates the relations among these quantities.

When the bearing is operating stably, the frequency number ¢ is zero. To deter-
mine the threshold of instability, ¢ is varied until ft = 0 (ref. 7). The bearing neutral
stability condition is then found by equating the centrifugal force, due to the whirling
bearing mass, to the radial bearing force.
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Figure 2. - Notation for eccentric bearing.

Mewgn =F,, (29)

The subscript n denotes the condition where ft =0,
A dimensionless bearing mass may be defined by

— Mp 5
M=__2 <9> (30)
2Ly

In terms of previously calculated quantities, M for the neutral stability condition is
given by

(31)

Reference 7 shows that -Mn is an upper limit of M for stability if the quantity aft/ Lo

is negative at ¢ = O conversely, ﬁn is a lower limit for stability if aft/ 00 is positive

at ¢ =0,

RESULTS AND DISCUSSION

The analysis of the preceding section has been used to obtain steady-state and sta-
bility information for a number of externally pressurized herringbone bearing configura-

10



tions. Results were obtained using the computer program presented in appendix C. The
computer program was checked by running cases for a plain externally pressurized bear-
ing (without grooves) and a herringbone grooved bearing (without orifices). Results for
the test cases agreed well with those of reference 1 and 4,

Because of the large number of parameters that may vary in a bearing, the effects
of all of them were not investigated. Rather, a number of the parameters were fixed.
The basic bearing chosen for study has a length to diameter ratio of 1 with a single row
of orifices at the bearing midplane. No inherent compensation effects were included.
The herringbone groove angle g is 300; the groove width fraction «, 0.5; and the
groove clearance to land clearance ratio H, 2.1. These values approximate the optima
found in reference 1 for maximizing the radial load component. Three groove length
fractions Lg/ L were investigated: 0 (ungrooved), 0.5, and 1 (fully grooved). The feed-
ing parameter At was varied from O (no orifices) to 4, and the supply pressure ratio
from 1to 5. Any other configurations of interest can be easily investigated using the
computer program in appendix C.

Steady State Results

Figure 3 shows the effect of the feeding parameter At on load capacity. Figure 3(a)
is for a pressure raj:io P s of 1, which means the bearing is actually unpressurized.

For this case, the load capacity W is greatest when there are no orifices (At =0); W
decreases with increasing At' A partially grooved bearing will carry a higher load than
a fully grooved bearing. The ungrooved bearing is not shown for this case; it is unsuit-
able for most uses because it is unstable when not loaded.

Figure 3(b), for a pressure ratio of 2, shows that at low values of A (less than
about 5) the load capacity now increases with increasing feeding parameter At' At
higher A's the order is reversed for the grooved bearings. That is, load capacity de-
creases with increasing At’ as was the case for the unpressurized bearing. The load
capacity of the partially grooved bearing again exceeds that of the fully grooved bearing.
For A less than 13 to 33 (depending on feeding parameter) the ungrooved bearing has
the highest load capacity. At higher A, the load curves for the ungrooved bearings
level off, while those for the grooved bearings continue to rise. This, of course, is
because of the increasing self-pressurization by the inward pumping herringbone grooves.

The load curves for the grooved bearings show an interesting phenomenon in that
they have a pronounced depression at an intermediate value of A. This depression
occurs when the pumping of the herringbone grooves raises the pressure on the bearing
side of the orifices to the pressure that is supplied externally. Near this point, the
derivative of mass flow with respect to bearing orifice pressure P c becomes very large

11
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(eq. (14)). That is, a very small change in P o causes a‘large change in orifice flow.
Consequently, the bearing is not as well compensated and the stiffness is reduced.

It should be pointed out that for an actual bearing the loss of load capacity will not
be as great as predicted by figure 3(b). This is because the difference Am/A(P c/Ps)
for finite A(P c/P s) does not approach the infinite value of the derivative om/o(P C/P s)"
Also, the orifice flow equations (14) neglect viscous effects. These become significant
at low flow rates and reduce the value of om/o(P c/P s) near P, =P.

Load curves for a pressure ratio of 5 are plotted in figure 3(c). The trends of fig-
ures 3(a) and (b) are continued here. Load capacity increases with increasing A, out to
the highest compressibility number plotted. No depressions occur in the curves (as in
fig. 3(b)), because the A value where P c=Pg is beyond the boundary of the figure.

Figures 3(b) and (c) show that the addition of grooves to an externally pressurized
bearing lowers the load capacity at low compressibility numbers, but at higher A the
load can be increased. The compressibility number, where the load capacity of the
grooved bearing first becomes greater than that of the ungrooved bearing, varies with
the pressure ratio, length of grooves, and feeding parameter.

The effect of pressure ratio on load is shown in figure 4. Load capacity generally
increases with pressure ratio. The load capacity for PS =2 is little different than for
Py = 1 (unpressurized), particularly at higher compressibility numbers. Near the value
of A where P c=P s (depression in load curve), the load capacity for P g~ 2 can drop
below that for P g = 1. Increasing the pressure ratio to 5 results in a relatively large
increase in load capacity, particularly at low compressibility numbers and large feeding
parameters.

Attitude angles are plotted in figure 5 for a pressure ratio of 2. Except at quite low
compressibility numbers (A < 5), attitude angles are smaller for smaller values of the
feeding parameter A;. The groovéd bearings (figs. 5(b) and (c)) exhibit behavior gener-
ally similar to an ungrooved externally pressurized bearing, with two exceptions. At
zero speed (A = 0) the grooved bearings have a small attitude angle, which may be posi-
tive or negative, depending on the length of the grooves. In addition, when the pumping
of the herringbone grooves increases the pressure P c to near the supply pressure P g’
the attitude angle rises rapidly. This corresponds to the drop in load capacity mentioned
earlier., A comparison of figures 5(a) to (c) shows that attitude angle decreases with in-
creasing groove length, except at high compressibility numbers (A > 35), where the bear-
ing with half-length grooves has a lower attitude angle than either the fully grooved or
ungrooved bearing.

Because the herringbone grooves act as a pump, the gas pressure in the bearing in-
creases with increasing compressibility number. Figure 6 shows the pressure at the
center of the bearing, P0 o’ for three values of the feeding parameter At’ aﬁ an external

14
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supply pressure ratio of 2, As expected, larger values of At decrease the rate of
change of PO c with A, This is because a larger At means the bearing is more open
to the external supply. The fully grooved bearing's pressure changes more rapidly than
does the partially grooved, since pumping is proportional to groove length. Pressure
does not change with compressibility number in the ungrooved bearings; to avoid confu-
sion, these curves have not been extended to A =0. The solid lines, for A; =0, indi-
cate the pressure in a bearing with no orifices; they are, of course, valid for any supply
pressure. '
The gas mass flow through the bearing appears in figure 7 for the same bearing con-
ditions as in figure 6. There are additional curves for At =1, For At = 0, the mass
flow is always 0. A negative value of m, indicates the gas flow is from the pressurized

1.0
/
8 -
6
A
£
. 2
=
k=]
ﬁ o Fraction
= parameter,
h
g -2 — 1
————— 2
_
_'4
0
_'6
0 —
-8 0
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0 10 20 30 40 50

Compressibility number, A

Figure 7. - Gas flow through bearing. Pressure ratio P,
2, length to diameter ratio, 1; orifice location parameter
LlL, 1; groove angle, 30°% groove width fraction, 0.5
groove to land clearance ratio, 2.1.
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supply to the bearing, whereas positive m indicates the bearing is pumping gas into
the pressurized supply.

The mass flow curves are arranged in the same order as the bearing pressure curves
of figure 6. Note that the magnitude of the dimensionless flow m, decreases as the
feeding parameter increases. This is due to the way mass flow is made dimensionless.
At zero speed (A = 0), gas consumption increases with increasing length of grooves.

This is because a grooved portion of a bearing has a larger flow area, and thus offers
less resistance than an ungrooved portion.

Stability Results

In order to keep the figures presented to a reasonable number, stability information
will not be given for all combinations of groove length, pressure ratio, feeding param-
eter, and orifice recess volume which were investigated. Instead, the basic bearing
mentioned at the beginning of this section will be further defined, and results presented
for variations of each of the preceding four parameters from their basic values. These
basic values are Lg/L =1, P =2, A, =2, and v=0.

Figure 8 shows the variation of stability with compressibility number, with groove
length as a parameter. Stability, as measured by the dimensionless mass M, generally
decreases with increasing A, and increases with groove length. Above a compressibility
number of 15, the stability of the fully grooved bearing increases sharply and becomes
much greater than that of either the half-grooved or ungrooved bearing.

The stability curves of the fully grooved and half-grooved bearings have distinct de-
pressions near A =14 and A =27, respectively. These depressions correspond to the
depressions in the load curves of figures 3(b) and 4(b). As was discussed regarding the
load capacity curves, the drop in stability in an actual bearing whirling with a finite
eccentricity would probably not be as drastic as figure 8 predicts. With an actual bear-
ing, problems with this low stability region can probably be avoided by passing through
the region rapidly, either by accelerating the bearing rotor or changing the supply pres-
sure.

Near a compressibility number of 38, the stability curve for the half-grooved bear-
ing becomes very steep, in effect imposing an upper speed limit even for very small
values of M. This limit generally occurred between compressibility numbers of 20 and
40 in the half-grooved bearings. A similar limit was not observed for fully grooved or
ungrooved bearings within the range of compressibility numbers investigated.

The effect of the feeding parameter At on stability is shown by figure 9. At low
compressibility numbers (A < 5), higher feeding parameters give greater stability.
Near A = 14, where the herringbone pumping pressure becomes equal to the supply

17
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pressure, the order is reversed, with the no-orifice bearing (A't = 0) most stable. At
high A (>20), there is no clear trend. The greatest stability is offered by Ay =2, and
the least by At =4,

100
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Figure 10. - Effect of pressure ratio on stability. Groove length ra-
tio, Ly/L, 1; feeding parameter, Ay, 2 length to diameter ratio, &
orificg recess volume ratio, 0; orifice location parameter Lyl, L
groove angle, 30°% groove width fraction, 0.5; groove to land
clearance ratio, 2. 1.

Figure 10 shows the effect on stability of a variation in supply pressure ratio. In-
cluded in this figure is the curve for Ay = 0; the remainder of the curves are for At = 2.
For low compressibility numbers (A < 10), P, = 5 provides the greatest stability; the
curve is beyond the maximum ordinate of the figure. Stability decreases with decreasing
pressure ratio. The plain herringbone bearing (At = 0) is between P g=1land P g =2
P g = 1 denotes a bearing whose supply lines are open to the atmosphere). For compres-
sibility numbers between 10 and 20 there is no clear optimum, as the curves rise and
. fall. At high A, pressure ratios of 1 and 2 are more stable than P =5 or the no-
orifice bearing. The figure shows that the addition of orifices to a herringbone bearing,
without pressurization, lowers the stability at low compressibility numbers, but can in-
crease the stability at high A.

The decrease in stability due to a small orifice recess is shown in figure 11. For
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Figure 11. - Effect of recess volume on stability. Pressure ratio, 2, groove
length ratio, L,/L, 1; feeding parameter, 2 length to diameter ratio, 1;
orifice location”parameter Lgb, 1; groove angle, 30°%; groove width frac-
tion, 0.5; groove to land clearance ratio, 2.1.

compressibility numbers less than 14 there is only a small loss of stability. At higher
A, however, the stability for a recess volume ratio of 0.2 continuously decreases, while
the stability for v = 0 increases from A = 14 to a maximum at A = 40 before decreas-
ing. This behavior at higher compressibility numbers is typical of the effect of recess
volume on the bearing configurations studied.

Multibranch curves. - For all cases of finite recess volume in grooved bearings,
there was more than one neutral stability condition found at the higher compréssibility
numbers. That is, for a given A, there was more than one whirl frequency which yielded
f, = 0. Figure 12 illustrates this for a feeding parameter of 2, pressure ratio of 5, and
recess volume ratio of 0.2. The controlling curve will be the lowest; this will give the
maximum value of M at which the bearing will be stable. Therefore, in using the anal-
ysis to determine stability, one must use some caution to be certain the smallest value of
M, has been found.
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Figure 12, - Multibranch curves. Pressure ratio, 2; feeding parameter, 2; ori-
fice recess volume ratio, 0.2; length to diameter ratio, 1; orifice location
parameter LgL, 1; groove angle, 30°%; groove width fraction, 0.5; groove to
land clearance ratio, 2. 1.

SUMMARY OF RESULTS

A small eccentricity analysis was performed to determine the steady-state and sta-
bility characteristics of externally pressurized bearings with herringbone grooves.
Compressibility numbers from 0 to 50 were investigated. The following results were
obtained for a bearing with a single row of orifices and a length to diameter ratio of 1:

1. The addition of herringbone grooves to an externally pressurized bearing increases
the stability of the bearing. Grooving reduces load capacity at low compressibility num-
bers but increases load capacity at high compressibility numbers.

2. The fully grooved bearing is generally more stable than the partially grooved
bearing. This is especially true at high compressibility numbers. However, the par-
tially grooved bearing has a higher load capacity.

3. At low compressibility numbers, stability increases with increasing supply pres-
sure and feeding parameter. At high compressibility numbers, there is no clear rela-
tion of stability with feeding parameter and supply pressure.
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4. Load capacity and stability decrease, and the attitude angle increases near the
speed where the pressure due to the herringbone groove pumping equals the external
supply pressure. This at least partly due to assumptions in the analysis.

5. Orifice recesses decrease stability. The effect is marked at high compressibility
numbers. When there are orifice recesses, more than one neutral stability condition

can exist at high compressibility numbers. The controlling condition is that which gives
the lowest dimensionless mass for neutral stability.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 30, 1970,
129-03.

22



o U <« a

(¢}

[y

I < B =

L N

APPENDIX A

SYMBOLS
orifice radius M
ridge clearance at zero eccen-
tricity : M,
coefficient (see appendix B)
bearing diameter m
orifice recess diameter
journal eccentricity
P
bearing load component
p
dimensionless load component,
F/ep, LD Py
dimensionless complex function R
of ¢ x
ratio of ridge clearance to groove Re
clearance when bearing is con- T
centric, (hg/hr)o .
local film thickness over groove,
C(H + € cos 6%) Ug
local film thickness over ridge, Up
C(1 +€ cos 6%) \'A
imaginary part of expression v
V-1
cps X W
specific heat ratio
bearing length w
length of bearing outboard of z
orifices
total axial length of grooves %
rotor mass per bearing
z
g

lubricant flow per unit length

dimensionless rotorsmass,
(P, /2Lu%)(C/R)

dimensionless rotor mass,
MCw?/p, LD

dimensionless lubricant flow rate,
2 2
4.4,R VZT V1 + 5 /

Na P,
number of orifices per bearing
dimensionless pressure, p/pa
pressure

atmospheric pressure

bearing radius

gas constant

real part of expression

absolute temperature

time

surface speed of grooved member
surface speed of smooth member

orifice recess volume

orifice recess volume ratio,
NV/7DLC

total bearing load
dimensionless load, W/ep o LD

axial coordinate measured from
end of bearing

distance from end of bearing to
first row of orifices

L_/2
o/
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aq

24

ratio of groove width to width of
groove-ridge pair

orifice discharge coefficient
groove angle (fig. 1)

inherent compensation factor,
a? /dC

eccentricity ratio, e/C

dimensionless axial coordinate,
z/L

Z; /L
z /L
o/
angular coordinate
rotating angular coordinate,

0 - wt
“p

bearing cqmpressibility number,
6 sz / paC2

A(L/R) if smooth member is
rotating; -A(L/R) if grooved
member is rotating

feeding parameter,
6uN2 VAT /b3 V1 4 02

lubricant dynamic viscosity

local lubricant density

frequency number, 12,uwa2/pa'C2

attitude angle

Yo  -(A/2Pg) Eam/a(Pc/PS] ‘ o

¥;  Nv/mp’ce 0c

w rotational speed

wp whirl frequency

Subscripts:

c condition immediately downstream
of orifice

g groove region

n condition at which f, = 0

r radial; ridge region

s condition upstream of orifice

t tangential

Z axial direction

9 circumferential direction

0 Zero eccentricity

1 perturbed quantity

Superscripts:

+ value of coordinate infinitesimally

greater than base value

value of coordinate infinitesimally
less than base value



APPENDIX B
EXPRESSIONS FOR BEARING MASS FLOW AND
DIFFERENTIAL EQUATION COEFFICIENTS
Mass Flow Expressions Used in Equation (2) (from ref. 1)
3

/zg=- R 3 g 3{(1-a)(hg-h§) sinBcosﬁ_l_EE
12p ah + (1 - oz)hg R 90

+ ‘}13 +(1 - a)(hg - hi) sin’ B] _Z_IZE - 6u(l - a)(Up - Ug)(hg - hr) sin B cos B}

3
h ; . . -
M =-_P r -a(h3,— h3) sin B cos B}--Q-E
3 3 g L R 30
ohl + (1- oz)hg

3 313\ Lin2 ol P _ _ :
+ l:hg - a(hg hr) sin 3] P +6poz(Up Ug)(hg h_) sin 8 cos B}

3
h
My =-L L _h3-a(h3-h3)cos23 1o
0 3. 3 |L8 & /7 IR o
ozhr+(1-a)hg

h
. . 2 p
- a(hg - hf’,) sin 8 cos B'—gg - 6ua(Up - Ug)(hg - hr) sin 3} +_2_r (Up + Ug)

Differential Equation Coefficients

2
71 - HS + a(l - a)ﬁI;IS - 1) sin? BR
a +(1- a)H3 L
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o _o(l- @) - DE - 1) sin p cos f A,

H 4 a(l - oz)(H3 - 1)2 sin’ B

2
¢, _20(1 - a)([-I3 - 1) sin Bcos B L

2 R
" + a(l - a)(H3 - 1) sin2 B

€40 = %3
€y, = - (0H +1 - a)(a +(1 - a)H3] <£>2
ud 3 N2 .2 'R
+a(l - a)(H - ) sin“ g
a(l - a)E® - D(H - DA sin® g
e 2 R
HS + afl - a)(H3 - 1) sin’ B

2
<. = HS + a(l - a)<H3 - i) cos? B <£>2
> 3 N2 .2 \R
H +a(1-a)(H - 1) sin® g
¢ _3a(l-a)H®- 1)(H - 1) sin g cos la@®-H-1)- (- )E2E +H - 1)) L

6 .
; 8% + a1 - (i - 1) 512 glfa + (1 - oo :

¢. = [a+(1-a)H3:| L\2

6b = 2 (E)
H® + a(l - a)(H3 - 1> sin? B
3a(1 - a)(H - 1)2H2A sin® g

6c
’ ,:H3+oz(1 - oz)(H3 - 1>2 sin2 é\[a +(1- Ol)Hs]R

L

2
3a(l - a)H - 1)(H2 - 1)As sin g8 cos [a[Hz(H2 +1) +a(l - oz)(H3 - 1) sin2'B:|

‘6’7_
2
3 3 ¥ .2
H +a(1—a)(H -1) sin“ g




¢ _3cHY(H - 1){1 s (- a)Ed - D2+ - oy@d - 1) sin? 3}
m

2
[Hs +a(l - oz)(H3 - 1)2 sin? B:]

In the ungrooved portion of the bearing, these coefficients become
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APPENDIX C

COMPUTER PROGRAM FOR ANALYSIS OF EXTERNALLY PRESSURIZED
HERRINGBONE GROOVED GAS-LUBRICATED JOURNAL BEARING

The program for determining steady-state and stability characteristics of the exter-
nally pressurized herringbone bearing is written in FORTRAN IV, version 13, for use on
the IBM 7094-1I digital computer at Lewis Research Center. Minor modifications may be
necessary to allow the program to be used with other computing systems.

Program Input

Two variables are set within the program: k, the specific heat ratio of the lubricant
gas, and RKEP, an accuracy parameter. As the program operates, the step size in the
Runge-Kutta differential equation solver is successively halved until the magnitude of the
bearing load W varies by less than RKEP times W.

The remainder of the information needed by the program is read from.punched cards.
A triad of cards shows each configuration to be analyzed. The first gives geometric and
operating parameters; the second contains the array of bearing numbers A to be used
(up to 19 values); and the third gives initial estimates of the frequency number o, one
for each A value. Specific formats follow.

Geometric configuration card: Format (13F6.0). - Succeeding eight-column fields
contain, in real format (with decimal point): g, a, H, L/D, Lg/L, SGN, Lf/L, Ay, Py,
v, ag, and 1 +62. SGN is +1.0 if the’ smooth member of the bearing is rotating, and
-1.0 if the grooved member is rotating.

Bearing number array card: Format (14, 19F4.1). - First four-column field: the
number of A's in the array, integer format, right adjusted. Succeeding four-column
fields: the values of A for which calculations are desired, real format (with decimal
point). Positive A means the program will search for a root of f; = 0 such that
aft/ do < 0. The reverse is true if A is negative.

Frequency number estimate card: Format (4X, 19F4.0). - First four-column field
is not read. Succeeding four-column fields contain, in real format (with decimal point),
the initial estimate of frequency number o, one value for each A.

Any number of geometric configurations may be examined in one run of the program.
Sample program input on a FORTRAN coding sheet appears as figure 13.

The first card is a geometric configuration card which indicates that g = 300,
a=05 H=2.1, L/D=1, Lg/L= 1, SGN = -1, Lf/L=1, At=2’ PS=2, v=0, 04=0,
and 1 + 62 = 1, The second card, the A array, indicates there are 13 A values ranging
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STATEMENT
NUMBER

FORTRAN STATEMENT IDENTIFICATION

78 910 1 1213 % 15 16 17 1819 20 21 22 23 2425 26727 26 29 30 31 32 33 34 35 36|37 38 39 00 &) 4263 4b 65 L6 67 4BIAY 50 I 52 53 54[55 56 57 58 59 60]61 62 6366 65 66|67 68 69 70 N 2|73 TL 157677 1819 B

@ | CONT.

Jrz s e

! 30|. .5 2.1 1. 1. -1. 1. 2. 2. 0, 0. 1.
| 13 |lo. .5 1. "J2. 4. 8. 12. 13. i6. 2/0. 24./ 32. 40, 50,
0 1. 3. 5. 8. 10.010. 0. 5. 5. |5, 5.

trpq-w--o-m, b SRl B e LRI he Sl

[ 1

41-—4—’—' + + ——

Ao

O N S S
—+—v—+J‘

T I o et o SRS + ettt ~t—t—

123 4 51607 8 910 11 215 16 15 16 17 18{19 20 21 22 23 24 (25 26 27 26 29 3031 32 33 34 35 36|57 38 39 40 &1 42[43 44 45 46 4T LB|LD 50 51 52 53 S4[S5 56 57 58 59 6061 62 63 64 65 66[67 68 69 70 71 12{73 74 751677 1879 8

Figure 13, - Sample program input,

from 0 to 50. The third card is the ¢ estimate card, showing initial estimates of o,
which correspond to the A array. Any number of these sets of three cards may be
used.

When the orifice discharge coefficient is specified as zero on the geometric config-
uration card, the actual value used is computed as a function of the pressure ratio across
the orifice, using the information in reference 2. If a nonzero « d is specified, that
value is used.

Program Output

Output consists of two sheets for each configuration: A working sheet and a calcu-
lation summary sheet.

The working sheet shows the geometric and operating parameters, trial values for
determination of the pressure downstream of the orifices, final value of orifice down-
stream pressure, Yo ¥1» and RKEP. For each A in the array and for each trial value
of o there appear A, fr’ ft’ W/(epaLD), , M2, final Runge-Kutta step size, M,
wp/w, o, and a coefficient applied to ¥, in equation (24). This coefficient, in refer-
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ence 4, was taken as 1 when o was 0, and 0 otherwise. In the present work it is always

1.

erated from the values shown in the sample input.

A sample working sheet appears as figure 14, The data appearing thereon were gen-

EXTERNALLY PRESSLRIZFD hERRINGBONE BEARING -- GROOVED MEMBER ROTATING
BETA ALFA H L/D LIG)/L L /L LAMBDA T PS/PA ve CRF.COESF 1408 %2 K=CP/CY
30.C0 0.500 2.10C 1.000 1.000 1.000 2.000 2.000 0 VARIABLE 1.C00 1.406
SCLUTICK FOR POC LAMBLA= C
PC  1.4142136 PCl 1.3121654 MO -0.8383 MAXMO Q UNCHOKED  ORIF COEF 0.661
2 #C  1.3631895 PCl  1.3026086 MO -0.8687 MAXMO O UNCHOKED  CRIF CREF 0.670
3 PC  1.3026086 PC1  1.2983005 MO0 -0.9015 MAXMO O UNCHOKED  CRIF COEF 0.682
4 PC  1.2983005 PCl  1.2982814 MO -0.9037 MAXMO O UNCHOKED  CRIF COEF 0.682
PC 1.298 PC/PS 0.649 PS0-0,783 PSl 0 RKDX REDUCED UNTIL ERROR .LE. 0.500E-02
LAMBD A FR/EPALD  FT/EPALD w/EPALD PH1 MCW2/PALD RKD X MPCS5/2LR5MU2 WHIRL RATIO VIE NR SIGMA PSC COEF
Q 0.282 ~0.701E-C2 02819 ~1.425 0 0.1250 [§ 10CC. c 1.€000
0 0.291 0.7756-C1 C.3012 14.90 ¢ 0.1250 41.916 1€00.0 -1.CCCO 1.C000
4} 0.282 0.91GE-C4 C.2818 0.187e~01 O 0.1250 5891.0 10C0.0 -0.8300E-01 1.C000
SCLUTICN +OR POC LAMBCA= 0.500
1 PC 1.4142136 PC1  1.3337132 MO ~0.8383 MAXMO 0.9587E-01 UNCHOKED  CRIF COEF 0.661
2 PC  1.3739634 PC1 1.3285685 MO -0.8625 MAXMC 0.9587E-01 UNCHOKED  ORIF COEF 0.668
3 PC  1.3285685 PC1l 1.3264548 MO -0.38878 MAXMO 0.9587E~01 UNCHOKED ORIF COEF 0.677
4 PC  1.3264548 PCl  1.3264503 MO0 -0.8890 MAXMO 0.9587E-01 UNCHOKED CRIF COEF 0.677
PC 1.326 PC/PS 0.663 PS0-0.807 PS1 0 RKDX REDUCEL UNTIL ERROR ,LE. 0.500€-02
LAMBDA FR/EPALD FY/EPALD W/EPALD PHI MCW2/PALD RKDX MPC5/2LRSMU2 WHIRL RATIO VIE AR SIGMA PSC COEF
0.5CC 0.313 0.2716-C1  C.3137 4.959 0 0.1250 0 0 0 1.0000
0.5CC 0.311 0.L0€E-C1 C.3114 1.956 7.7793 0.1250 1120.2 0.2000 c.zcoe 1. 0000
0.500 0.311 -0.594E-C2 C.3106 -1.096 1.9410 0.1250 279.51 0.4C00 0.4CCO 1.€000
0.500 0.311 0.5816-05 C.3107 0.107E~02 2.8828 0.1250 415412 0.3283 c.3283 1.6000
SOLUTICN FOR POC LAMBCA= 1.C00
1.4142136 PC1  1.3576819 MO ~-0,3383 MAXMO  0.1917 UNCHOKED  CRIF CREF 0.661
2 PC  1.3859477 PC1  1.3554464 M0 ~0.8554 MAXMO  0.1917 UNCHOKED  CRIF CGEF 0.666
3 PC  1.3554464 PC1  1.3545969 MO -0.8731 MAXMO  0.1917 UNCHOKED  ORIF COEF 0.672
4 PC  1.3545969 _PC1 1.3545963 M0 ~0.8735 MAXMO 0.1917 UNCHOKED  CRIF COEF 0.672
PC 1.355 PC/PS 0.677 PS0-0.830 PSL O RKDX REDUCEL UNTIL ERROR .LE. 0.500E-02
LAMBDA FR/EPALD  FT/EPALD w/EPALD PHI MCR2/PALD RKDX MPC5/2LRSMU2 WHIRL RATIO VIE NR SIGMA PSC COEF
1.000 0.347 0.575E-Cl 0.3513 9.414 0.1250 0 0 0 1.£000
1.600 0.339 -0.22CE-C1  ©.3394 -3.718 1.3547 0.1250 48.769 0.5000 1.0CC0 1.0C00
1.000 0.34C 0.101€-C1 C.3398 1.708 3.7743 0.1250 135,87 0.32000 C.6000 1.C000
1.000 0.339 0.2526-C4 0.3391 0.426E-02 2.5726 0.1250 92.613 0.3630 0.7261 1.€000
SOLUTICN FOR POC LAMBCA= 2.000
PC  1.4142136 PC1 1.4108198 Mg ~0.8383 MAXMO 0.3835 UNCHBKED  CRIF CGEF 0.661
2 PC  1.4125167 PCl 1.4108133 MO -0.8394 MAXMO 0.3835 UNCHOKED  CRIF COEF 0.661
3 PC  1.4108133 PC1 1.4108112 M0 -0.8404 MAXMO 0.3835 UNCHOKED  ORIF COEF 0.662
PC 1.411 PC/PS 0,7C5 PS0~0.874 PS1 0 RKDX REDUCED UNTIL ERROR .LE. 0.SQ0E-02

Figure 14, - Example of working sheet.

The calculation summary sheet again shows the geometric and operating parameters,
and, for each A of the A array, W/(ep,LD), ¢, wp/w, 0 Mop, M, Py, (9£;/00),
my, a4 (actual value used), and the :,I/O coefficient. Figure 15 shows an example of a
summary sheet. Again, the data correspond to those of the sample input. Program
execution time for the sample input was 20 seconds.
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L/D
1.000

PS/PA
2.C000

BRG NR
LAMBCA

0

0.5C0
1.000
2.CC0
4.000
8.CC0
12.00
13.C0
16.C0
20.C0
24.00
32.00

40.00

EXTERNALLY PRESSURIZED HERRINGBONE BEARING -- GRUQVED MEMBER ROTATING

La/L LAMBDA T L+DELTA®»2 K=CP/CV
1.000 1.000 1.400
BETA H LG/L
30.00 2.100 1.000
BRG LOAD ATT ANGLE WHIRL RATIO VIB NR STABILITY
W/EPALD PHI WP/OMEGA SIGMA MCW2/PALD
0.282 -1.425 1000. ~0.830E-01 ©
0.314 4.959 G.328 0.328 2.883
0.351 9.414 0.363 0.726 2.573
0.434 14.1C 0.371 1.484 2.863
0.5%92 15.29 0.355 2.840 3.948
0.815 11.55 0.313 5.005 6.796
0.920 13.22 0.340 8.162 5.828
0.896 20.24 0.397 10.32 3.318
1.022 9.870 0.306 9.778 8.340
1.138 4.334 0.183 7.303 30.48
1.238 2.3177 0.111 5.314 . 95,01
1.432 0.822 0.411E-01 2.631 829.1
1.629 0.411 0.212E-01 1.699 0.357E 04

ORIF COEF REC.VOL.VC
VARIABLE 0
RKEP
0.500E~02
PARAMETERS
MPC5/2LR5MU2  PC/PA
0.589E 04 1.298
415.1 1.326
92.61 1.355
25.77 1.411
8.884 1.523
3.823 1.743
1.457 1.945
0.707 1.984
1.173 2.079
2.743 2.294
5.938 2.533
29.15 3,042
80.33 3.575

Figure 15, - Caiculation summary sheet,

D(FT)
D{sSIGMA)

~0.84€-01
~0.83E-01
-0.80€~01
~0.76E-01
-0.66E~01
=0.56E-01
=0.47E~-01
~0.57E-01
~0.376~01
-0.18€-01
~0.12€-01
-0.86E~02

—0.728-02

MASS
FLOW G

-0.904
~-0.889
~-0.874
-0.840
-0.765
-0.572
~0.271
~0.146
0.329
0.655
0.915
1.361

1.750

ORIFICE
CCEF AD

C.682

C.581
c.58¢
C.60¢
€.632
Cab18

C.71¢€

PSO
COEF

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.000
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C SMALL ECCENTRICITY STABILITY ANALYSIS Fur HERRINSBUNE BEAKING wItH IRITICES

32

DIMENSION SLAM(20) 450 (2001 3 5PHI(20) 3SW3(2)),5C14(2))45516:(2))
OIMENSION AZM(20) 2520200 4SPC(20) ¢SHMU(20) 45SAU(201,5PS5(25)

CIMMIN /CY4/ DP DL ,OG,I5P

COMMON /CFM/ PUR 4Ky SKL,SK2,VARALAG .

COMMON /CHK/ CCoULCC

CUMMUN /Cf‘l"/ HLM,CP,CZA,CZBy[C'jA’IC(QA’XCQV‘yli:S['W,[(:Cr/-\'le)niy[(:559"9
1 C5A,CTA,C83,HLM2,4C55

CIMMON /CHS/ LAMBDA 4P SOPSL L MACMCand o PHI s iRy RKEPyQeLyPCyCaB,CAaC,
1 Co6ByCOL FIRST 512,208

CIMMON /CHR/ CUL9dD 925420

REAL LslusLOsLTeMU,CU2) 9KyLSyLaMBDA

CUMPLEX L1C3A, IC4Ay IC4W ) ICSAWICOALCONILSON

COMPLEX Y{2)A(2)8(2)XF4LDXyCGHDS

LOGICAL VARALFIRST

EXTERINAL F1

ALPHA(P) = 84276 + (.06451 + (-.75195 + J434L5%P)«P)}*p

EPS = l.BE-4

EPSW = l.E-3

K = 1l.4

SKL = SQRT {2.%K/{K+L) I x {20/ {K+La) ) %% {La/ {K=14))
SC2 = SWRAT (2.%K/(K-1la})

PCR = (2e/(£41} )% (K/(K-1a))

RKEP = .005
READ {5,5) BETAD,ALFA,H,CL +LGySONyLUWLT PSSy VL, AD,DL
FURMAT (13F6.0)

BETAD = GROOVE ANGLE, DEGREES. ALFA = GRUUVE WIDTH FRACTION. H = GRUJIVFE
CLEARANCE/LAND CLEARANCZ, L = L/D. L5 = GROUVE LENGTH FRACTION LG/L

= +1.0 FIR SMOUTA MEM3ER ROTATING, ~1.0 FOR SRUOVED MEMBER RUTATING

LO=FRACTION JF LENGTHA UOUTBOARD OF ORIFICES, LT=LAMBDA(T ), PS=2RESSIRE RATID
'VC=ORIFICE RECESS® VOLUME RATIU, AU=ORIFICE COEFFICIENT, Ol=1#DELTA%%2
LG=1 DENOTES FuULLY GROUUVED BLARING, LO=1 DENUTES SINGLE ROA OF ORIFILES

IF {LOEd.0s) SGN = 0.

VARA = FALSE.

IF (AD.EJ.04) VARA = ,TRUE.

READ (541} ISy (SLAMCI}, I =1, IS)
FIORMAT (14, L9F4.1)

READ (5423 (SS51G(I)y 1 = 1y IS)
FIRMAT [(4X,1974.0)

FIRMAT (LHL/8X,05HSMALL ZCCENTRICITY ANALYSIS FUR HERRINGBUONE GEA?
LING WITH ORIFICES )

PLA = PS¥PCR

BETA = SIGN (BETAD/H57.2957/96, SGN)
L = 2.%CL )

SI= SIN(3ETA)

Ci= COSMBETA)

ALFI= 1.-ALFA

H2= H*H

H3= HZ2%*H

DN= ALFA+ALFI%H3

H32= (H3- 1l.)%%2

AA= ALFA%®ALFI

AS= AA®SI*S1

ASC= AA%*S1#%(D

D2= H3I+AS*H32

H31= (H3-l.)%{H-1,.)

Cl= D2/7IDN*L)

WRITE (6, 707)



70/

91
808

90
830

909
902
6

61

62

L5

FORMAT (1HL/15X,45HEXTERNALLY PRESSURIZED HERRINGHON: BEARING -- )
IF {56N) 95 9G, 91

WRITE {6,808}

FIRMAT (1lHt 60X, 2245MUOTH MEMBEK RUTATING

GO TO 902

wWlkRITE (6, 890)

FORMAT (1H+ 60Xs 1 TAUNGROOVED BEARING )

Gy Tu 902

WRITE {65909}

FIRMAT (1H+ 60Xs; 2345KROUVED MEMBER RUTATING )

WRITE (05 0)

FIRMAT (oHL BETA TX44ALFA BXsLlHH 9X,3HL/D TXs60HLIGI/L 5%, 6HLI3)/_
L 4X o BHLAMBUA T 4Xs5HP S/PA 8X21V0 6X8HORFL.CIEF 4X,6HL+0%%x2 5X,
2 THK=CP/CV )

IF (aNUT.VARA) WRITE {b,01) BETADALFAsHCLLG,LU LT PSS,V AL, DLs<
FIIMAT (12G11.3)

IFf (VARA} WRITE (6502) BETADsALFAi:CLsLGLUO;LTPS,VC, 01,4
FIORMAT (9GLll.3,8rMVARLIASLE 3X 2511.3)

16 = LG/2.

20 = LO/2.

C2A = 2.

IC3A (0.9 2. )¥ASCH*HIZ2/D2%L

IC4A = 1L 3A

C5A = (H3 ¢ AA*CU%L0%x432) /U2%L*L

IC6A = (U3, )%ASCHH3LR (ALFAR{H2~H4~1. ) ~ALFI*42%{(H2+H-1.)17D2/DN*L
CeB = L/C1

C4B = —COB¥(ALFT + ALFA%*Ad)

CS5 = L*L

D37 = 3./0N/J)2%ALFARA2%{4-1o) ¥ (1 +ALFI*{H3-1.)%S[#S5T%{ 2. %ALFA

1 + ALF I®{H3+1.)1))

DG = IC3AxC1xL/2.

beP = (1%L

00 300 I=1,IS

SDS = SIGN (la.s SLAM(I)
SLAM(I) = ABS {SLAM{I))
LAMBDA = SLAMI{1)

IF (LAMBDAEJaDssANDe (PSstuel ea ORaLT-ER.J)) GO TG 32D
IF (LAMBUAGEJoOe s ANDe (PS.ENslae OReLTaEGaU)) GO TU 32D
IF (LGEQe0:.-ANDSL.GT-L) GU TO 27

LS SON*L*L AMBDA

cp ASC¥H31*L5/)02

WRITE (6;8) LAMBDA

FIRMAT LLTHLSOLUTIOUN FOR PUC 8X TALAMBUA= G1).3/)

}

]

HLM = 0.
HLM2 = 0.

MO = 0.

PC = l. + CPXIG

If (LT.EQ.O0.) GO TU 25
PC AMAXL (P2, SQRTIPS)]
XF LG

COX = LG/ 32.

D3 20 J = 1. 10

IF (.NUT. VARA) GO TO 15

P = PC/PS

IF (PeGTule) P = 1./P
AD = ALPHA(P)

MO = FMU (PC,PS,OMO)*AD
DM = AQ*DMD

DMP = DMU/PS

UMD = 2.%C1%CP/LT

33



22

23

81

92
24
10

20

25

26

21

34

HLM = LT*AMINL{MU,UM3} /2.

HLM 2 = HLM%L

HL4 = HLM/CL

IF (MO .GE.uUMJd) 30 TU 8l

IF (CPEIL0.) GO TD 22

POG = SURTIAMAXLAPC#*PL + LxLT*MO*(20~23) 4+0.))
PL = ALOG {((POG*IP-rALM)/(LP-HLM))

LGl = (PJG-1l. + HLM/IP®PL)/CP
POG = PUOu*LP
DIG = (PC + JL*LT#{ZI=L5)%0MP)/(POG-HLM) + LT/ {2.%CL*CP*CP ) %xDUP

L #%(PL + HLM%*(PUG~-ZP)/(PUS-HLM) /(CP-HLM))

PCL = PC - (ZG1-4LGi/I16

GJ TU 24

IF {(ZG.EQ.0.) GU TO 23

PG2 = PL¥PL + L¥LTHMU*(ZI-2G}

PCL = PC = (HLI¥ZG-e5+.5%¥P52) /{PL+5%{1Lo~PC:PL)/ MO*DMP)
G3 T3 24

LG1 U = (L.-PC%PC)/HLM2/2.

DILG = PC/HLMZ2 + (ZU-Z431)/MuxuMp

PCl = PC - £51/016

[F (PCoLTPLAJANDPCLLLT.PCA) PCL=SURT{le=2.%HLM2%/0)
GO TO 24

Y{2) = 1.

{F (LG.EJ.0.} G3 T3 92

Y{ir) = 0.

CALL RKGE (FlsYeXF3ZlIX4A4B42)

PCL = SQRT(AMAXLI(REAL{Y(2))%%2 - L¥LT®#AMINL(MO,JMO)%(Z20-15),0.))
W iTE (6,100 J,P2,PCL,MO,UMO,C,AD

FOAMAT (1894X 2HPC 5157934PCL GLl547,42HMOGL2 o % ySHMAXMOGL 2. 4y Aby Afy
13X 9HORIF COEF 510.3)

IF (ABS{PLL/PC - l.de.LE.EP3) GO TO 25

IF (PCLTLPCALANDLPLL.LT.PLA) PC=P(L

IF (MO LT .UMDLAND.J.GT.1) PC = PCL

PL = (PC+PCLI/2.

SHiI) = 0.
60 TO 300
PSO = -LT/2.%¥0UMO/PC

PSl= VCxCL/PC

PCS = PC/PS

Q=L E#MT*FLT /P

4D = QDL + .5)/01

Q@ = Q/PC/2.

WRITE (b6y26) PC,PLSyPSO,PSL,RKEP

FIXMAT (6HK PC GLlO0.3+54PL/PS GLO.3,0H PSSO G10e3,6H PSS!
1'610.3,32H RKDX REDUCED UNTIL ERRJIR .LE. Gl2.3)
PSO = L*PSO/PS

PS1 = i%¥PS1

5 PC

MO

AQ

SIGL = SSIG(I)

DS = 1.

IF {LAMBDANE.O.) DS = +4¥LAMBDA

c2B = -Cp

Cal = ASkH3L¥LS%L/D2

1%
B~
(w}
—
—t
1]

1724
>
C
-
-
-~
H n

te6l Bk ASH (H=- 14 )R % 2%H2%L S/D2/DN*L )
C74 = 2. %ASCH(H-la) % (H2-1la) L S*{H2% (H2+¢1 .} +AS®H32)/D2/D2
{88 = CP

DP = DPT*HLMZ2

0C = C7a%xC1LxL



WRITE (06, 140)
140 FIIMAT (gHK LAMBJIA 4X3 84FR/EPALD 3X,8HFI/EPALD QX THal EPAL D 2X,
L 4X 31PHI 4X 9HMIW2/P ALY TX 4HRKDX 5X L2HMPCS3/72LR5MJ2 1IX
2 LIHWHIRL RATIO LX 124VIg NR SIGMA 2X B8PS0 CCGEF )
FIRST = . TRUE.
CALL HYST (0.,G13}
FIRST = FALSE.
IF {LAMBUA.EG.0.) 510=.25
SWil) =W
SPHICI) =PHI
CALL HYST (SIGl, G111}
SIG = S5IG1
IF (A3S(51L/510).LE.EPSW) GO TO 239
DS1 = >D5%SIGN (0S5, 5I11)
SIGZ2 = 35161
DO 150 J = 1, 20
SIce = SIG2 + DSl
CALL HYST (5162, G12)
SIG = SI52
IF {ABS(GI2/5310).LE.EPSW) GO TO 299
DS2 = SDS*SIGN (DS, 312)
IF (D32 - DS1) 220, 210, 220
210 SIGL = SIG2
150 GIl = GIZ2
GO TO 299
220 D3 235 4 =1, 10
SIG = (GlI2%35161 - GIL*SIG2) /71612 - Gil)
SD(E1) = (6l2 - GIL)/{5162 - SIGL)
CALL HYST (SIG, GIJ
IFLABS(GI/GIU)sLELEPSW) 30 TU 299
IF (ABS{G12)1.6T.ABS{51I1)) GU TU 230
GIl = GI2
SIGL = 8iG2
230 Gl2 = Gl
235 Sig2 = SIG
299 SW3([)=Hhr
ACM(I)} = CMA
SCM{T )=CMC
SSIGLI) = SIG
SPS{1) = CP>
300 CONTINUE
WRITE (6,707
IF (5GN.LT.0e) WRITE {6,909)
IF (SGNEQ.Ve) WRITE (6,390)
I (S5GN.OT.0.) WRITE (6,808)
WRITE (6y600) CLyLOSLTy01,K
600 FORMAT (LHL 8X34L/D 8X34HLO/L 6 Xy8HLAMBOA T 4X,10H1+DELTA%*%2 3X,
1 THK=CP/ZV 4X,8HORLIF JUcF 2X,lOHREC.VOL.VL /753X ,45612.3)
IF («NOT.VARA) WRITE {6,601} AD.VC
601 FIRMAT (LH+ 64X 2G12.3)
IF (VARA) wWRITE (6,602) VC
602 FORMAT (1lH+ 05X 8HVARIABLE G15.3)
WRITE (6, 603) PSyBETAD,ALFAH LG yRKEP )
603 FORMAT (/88X SHPS/PA TX 4HBETA 8X 4HALFA 11X LAH 12X 4HLG/L 8X
1 4HRKEP /95X 7612.3)
WRITE (65325) {SLAMUL)Y pSW(L) oSPHECL) oSW3{I)SSIG(T)4ACML{T) 4SCU( 1)y
L SPCLIL)oSOLL)ySHULL) 3 SAQLL) 4SPS(I) 41 = 1,4 IS)



325

FORMAT (/1HL  3X364BKR5 NR 3X:84BR5 LUAD 2X322HATT ANGLE 4 HIRD RAT
L1J 2X:6HVI3 NR 3X;2045TA3ILITY PARAMETERS 10X 5HULFT) 6X %HMASS

2 4X THORIFICE 5K 3APS0O /

1 4X 6HLAYMBDA 4X THW/EPALD 5X 34PHI 6X 8A4WP/UMEGA %X 5HS IGMA 4X

2 30HMCW2/PALD  MPCH/2LR5MU2  PC/PA 4X BAD(SISMA) 3X THFLUA MD
32X THC3kF AQ X 4HIUEFR /

4 {/3X 2G1l0.53;0611:39512:37:20103,251253469250116346G10. 5,;5 3))

Gu TC 3

END

$IBFTC HYDST

10

C

36

SUBROUTINE HYST {SIGMA, GI)

COMMIN /CFF/ HUMsCP o 22A5C281C3AICHA1C4W [CSaWIC0LA, [CoA, [LS5A,
1 C5A3C 7A5C83,HLMZ2,0 55

CIMMIN /CHS/ LAMBDA PSO,PSL,CMA,CMC s PHI g WRIRKEP 4 GsL s PCyC4B,CAC,
1 CoBsCOL s FIRSTGILs2PS

COMMON /CHR/ CGsdbeLG 420

REAL L AMBDAyL

CIOMPLEX AAsA3 BA:BB3,LA-CB,LE4TOX

COMPLEX 1034, 1044, 1064WJCS4W,1C6A,LCO4W, 10504

LIGICAL ¢ IRST

IF (FIRSTLUR.SIGMALNE.D.) G0 TU 10

GI = GI1Z

WR = 1000.

IF (LAMBDANE.D.) WR = Q.

cMC = Q.
CMA = 0.
RETURN

CPS = 1.

CG = PSU*CPS + 2 + (0eyla}xSIGMA%PS]
PSU=0 MEANS ORIFICE MASS FLUW UUES NJT VARY WITH THUTA
DX = 45
TOX = 0.
WR=LAMJDA - SIGMA

ICaW = (Oeplod¥{LaB®ar + (4C)
IC6W = (Uayla )®(C68%dR + C6C)
ICS6W = {Oaeygls)*C S5%MR

ICS4W = -1CS6W

D3 LION =1, 8

BA = 0.

B8 = {~les=1lo)
CALL RKLP (BA,UX;AA,CA)
CALL RKLP (88,0X,A8,08)

CA = =3,14159265#(AB%CA - AA®C3)/{AB - AA}
IF (CASS{TDOX/CA=1.) oLE. RKEP) GO TO 12D
DX = o5%0X



110
120

145

Tux = CA

ROX=DX

GR REAL (CA)

Gl AIMAG(ZA)

IF (FIRST) GIZ = 51

W = CABS({CA)

PHL = ATANZ2(GIGR)I*57.2957796

WR = 1000.

CMC = 0.

IF [SIGMANELU) CMC = 134.%¥GR/SIGMA%R*2
CMA = CMC*LAMBDA%*%2/36,

IF (LAMBDALNE.O.) WR = .5%SIGMA/LAMBIA

il h

WRITE (6, 14b) LAMBIAZGR 9519w, PHL yCMALROX,CMC,WRySIGMA,CPS

FIRMAT (36G11e3s 512:49531103,01244+2613.493G12.4)
RETURN

END

$IBFTC FM

20

30

40

FUNCTIUN FMO (PG ,PS,DMD) .
CIMMUN /CFM/ PCR 9Ky SK1,S5K2 , VARA ,AD

COMMON ZCHK/CC 2 UC,C (2)

REAL X

LOGICAL VARA

DALPH (Y) = .0645L + (=2,%.76195 + 3.%,43415%Y) %Y
IF (PC.GT.PS) GU TO 20

PCS = PC/PS

AD DAL PH(PC S)

PM = —-PS

G0 TU 30

PCS= PS/PC

AD = —PCS*PLS¥DALPAIPLS)

PM = PC

IF (PCS.GT.PCR) 53U TO 40

FMO = PMxSK1

DMO= 0.

IF (PC.GT.PS) DMU = P5%SKl

IF {VARA) OMO = DMO + FMU*AD/AD

Cli) = CC

RETURN -

PK = PCSk%(Ll./K)

PSd = SWRT {1.-PCS/PK)

FMO = PM% SK2%PK%P SQ

IF (PS.GT.PZ) DMO

[ 1

=P S SKZ2¥{PK/PCS~(K+1.)/2.)/PSQ/K
IF (PS.LT.P2) DMJ POS¥SK2*(K=1s) /KX{PK-PL5/2.)/PSQ
If (PS.EQ.PC) DM 1.E10

IF {VARA) OMO = OMJ + FMU*AD/AQD

Cili=uC

RETURN

END

i #

317



$I8FTC BD

BLUCK DATA

COMMON ZUuHK/CTUC,21(2)

DATA CC,UC2{(2) / 1H 344  UNZ6HCHOKED /
END

$13FTC RKLPS

16

20

38

SUBROUTINE RKLP (GIN,DXsAD,CD)
CIMMIN /O Y4/ DP D05 ,06P
CIMMON /CHR/ CGedD 25,540
COMPLEX Y{(5)4A(5),3(5) GIN,ADLDC5+ XF,CDX
COMPLEX DG
EXTERNAL F2,F3,F4

Y{l)= 0.

Y(2) = 1.

Y{3} = 0.

Y{4) = GIN

Y{5) = 0.

IF {ZG.EQ.0.) GO TO 10
XF = 106

COX = 2G/AMAXOUIFIA(ZG/DX+a1) 41)

CALL RKGC (F24 Yy XF 320X A48 45)

Y(4) = DP/Y(2) + DU + uGkY{3) + D5P%Y(4)
IF (ZG.EQ.Z0) GO TI 15

XE = 20

COX = {Z0-2G) /AMAXO(IFIX{ (ZU=2G) /DX+.1)41)
CALL RKGC (F33Y3XF ,COXsAs8,5)

Y{4) = Y{4) - QD - C3%Y(3)

IF (0.EQ..5) GO T3 20

XE = .5

COX = (o5=20) /AMAXOCIFIX{ (45~20) /DX+s1}41)
CALL RKGC (F4sYyXF 42X gArB,5)

AD = Y(4)
CD = Y{5)
RETUR N
END



$ IBFTC

1

¢ SUBR

€ SUBR

1
2

C SuUBR

1

C SsuBr
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$ IBFTC

C  RUN

FF

SUBRUUTINE FL1 (Y,YP)

COMMON /CFF/ HLMoCP 224,220 1C3A,IC4ATC4W10S4W1C0A, LCHA;1C50M,
CHA,C TA,C 33 yHLMZ,2 55

COMPLEX IC3A,1C4A 124w Il 54 ICOA,ILOWICSOA, Y1), YP()

JUTINE FIR PJ
YP{l)= 1,

YPL2) = 0P~ HLA/YLZ)
RETURN

ENTRY F2 (Y,YP)

JUTINE HIR G IN 3R0UVED RESIUN
YPL2) = 0P -HLA/YLZ)
YP{4) = -({(C2A%YP{2)+L2B)/Y(2) + I({3A YRY (4} - (|
IC4AxYP {2)+1C4ad + {-YPL2)+C8BI*YP(2)/Y{2)1/7Y(2)-CHA)*Y(3)
+ IC6A*¥YP{2)+1LoW - CTARYP(2)}/Y{(2)
GJ T0 10

ENTRY F3 (Y,YP]}

OJUTINE FIK G IN SM3OTHA ReEGION

YP(2) = -HLM2/Y{2)

YP({4) = —C2A%YP(2)%Y{4)}/Y(2) — ({ICS4W —- YP(2)%YP(2)
/Y12 1/YL2) — L55)%Y{3} + 1CS6W '

GO T3 10

ENTRY F4 {(Y,YP)

JUTINE FOR G IN REGIUN INBOARD OF ORIFICES
YP{2)= 0.
YP{4) = {CS5 - LICS4w/YI2)1)%Y{3) + 1Us0W
YP{L)= 1.
YP{3) = Y{(4)
YPE{5) = Y{(3)
RETURN
END
RKGHC

SUBROUTINE RKGC (DERIV, Y, XFINAL, DELTA, s YP, N)
GE-KUTTA-GILL INTESRATION OF N-1 COMPLEX FUNCTIUNS OF COMPLEX

C  ARGUMENT Y(1) FRIM Y{1)INITIAL TU XFINAL

1

LO
20

DIMENSION A{4), 314), C(4%)
COMPLEX Y{L}y Q(L)s YP(L)s XFINAL, DELTA, T

DATA A/.5, 2292893219, L. TUTLOOTEs 1965056577/ B/ 2«5 los los 2.7y

C/eDy 2292693219y 1.T0710578, .5/
KK = CABS({(XFINAL-Y(1))/DELTA} + .01
IF (KK .EL0) GG TU 20
b0 5 I =1, N

Qli)=0.
D0 10 K = 1, KK
D3 10 J = 1y 4

CALL OERIVIY,YP)

DU 10 1=1,N
T=A{J)X(YPILI-B{JI*Q(1)}
YII)=Y (1) +DELTA®T
QELI=QC0 1 43.xT-L{J)xYPIL])
RETURN

END

39
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